
For one of our premium clients, we had to develop a highly scalable background processing engine

based on Sidekiq. This is an intelligent system that parses documents and has an embedded

machine learning component in it. The number and the size of the documents can vary drastically

and the system should be efficient enough to scale for this change. In such a case, parallelism is the

only solution for consistent delivery. So, we had decided to spawn multiple sidekiq jobs. But, the real

challenge here lies in the confluence of these many modules and in managing them.

For the aforementioned platform, we needed the following items.

Premise

Needs and Tools

1

 Machine Learning - This is the core. We decided to use Django for this.

 UI - For visualizing the output we wanted a new UI component here. As Rails is one of our

favourite frameworks, we opted it.

 Relational DB - We needed a centralized relational DB that also should be exposed to other

related apps in the ecosystem, and we chose Postgres for this.

 Background Jobs - For parallelization, we need a few nodes for background processing. For

managing multi-processes, we chose sidekiq.

High Volume background processing
with Kubernetes and GKE

2

 Caching - For centralized caching we needed an efficient caching server. We chose
Memcache for that.

 Containerization - We had been using Docker for a long time both on our local and some
production environments. So, we continued to used that as well.

 Rolling updates
 Very High Availability
 Extreme scaling of Sidekiq processes (upto 1000 Jobs/sec)

We initially explored using docker-compose. We had been using docker-compose for on boarding
new joinees to the team and for most of our development needs. We even had tried our hands in
deploying docker-compose onto production. But, It generally requires several manual steps for
setting it up in the production server including a shared directory for containers and secrets
management. But we actually needed an orchestrator in this case. For instance, if one of the
containers is stopped, an orchestrator has to start the container in no time in addition to providing
scaling opportunities.

Since most of applications are deployed on Google Compute Engines, Google Kubernetes Engine
was an obvious choice for us.

GKE is a managed, production-ready environment for deploying any containerized applications. It
improves developer productivity, resource efficiency, automated operations, open source flexibility
and hence accelerates the project delivery. It enables rapid application development and iteration by
making it easy to deploy, update, and manage the applications and service

This type of features are difficult if not possible to achieve in other deployment tools like Capistrano
without manual intervention.

Few interesting things that influenced us to move to Kubernetes were

Docker Compose?

Why Kubernetes?

Google Kubernetes Engine (GKE)

3

 	One Redis container

 	One UI container

 	Two(at-Least) Sidekiq containers

 	One Django container

 	A cluster of GlusterFs containers

We sat with the DevOps team for the deployment architecture. We decided that we need to run the

following containers

The machine learning stuff was supposed to be run in Django based application that exposes the

calculated data in the api. Also we decided to keep PostgreSQL, the database server in Google

Compute Engine as a separate server outside the cluster as this is used by other projects as well.

GlusterFs containers are required as data is shared between most other containers through the file

system.

The Architecture

4

Since the directory based data is shared between Rails app, Sidekiq and Django app, we had to

initially resort to running all these containers in a single pod. This means that we can’t scale it as file

uploaded in a pod will not be available in a pod running another instance of sidekiq. This forced us

into considering GlusterFs as a first class citizen and create GlusterFS cluster and getting each of

the containers running into its own pod. This is a recommended and best practice too. The

configuration for these containers are of Kind (in Kubernetes terms) Deployment In General,

Deployments are scalable to greater limits.

Setting up GlusterFs was still a large pain in Kubernetes cluster. So keeping that running outside of

the Kubernetes cluster was initially the solution. After we configured Glusterfs with the Kubernetes

and running each containers into separate pods worked out great for us.

After we defined this StorageClass and referencing gluster-storage in all the other deployment

configurations, it worked like a charm and performance was really good. This is one of the early

mistakes we did while setting up the QA environment.

Few more nuances we need to be aware of while deploying to Kubernetes is that Kubernetes Engine

doesn’t yet support SSD root disk in Node Pool. This is especially strange in 2018. In our

benchmarks, the application deployed in Kubernetes is still slow by a minor margin. This could be

due to the use of standard storage in GKE NodePool.

After running all these, the application worked well for us. However the application was very slow. On

review of the configuration files and GKE dashboard, we noticed that the cluster was still making use

of Google’s default pd-standard storage in PersistentStorage kind, like shown below.

Considering GlusterFs

Issue with StorageClass

5

We are also using Google container registry for building the container. So every time we pushed the

code, Google container registry automatically pulled the code and builds the container. This makes it

deployment speed slower than Capistrano based deployment. Google doesn’t seem to maintain

cache for bundles or caching the layer for us automatically until you use cloud builder. We also did a

thorough study on speeding up the building of the containers.

Also every time we push the rails code, we also build Nginx container that serve as a reverse proxy

for the rest of the cluster.

Following is the one of the deployment kind file for Sidekiq. Names have been changed of course.

We could ask for Kubenetes controller to allocate CPU and RAM as mentioned in the resource below.

For Sidekiq, I needed 1.2 GB of minimum RAM. If you don’t specify the replicas size, its value is

considered 1 by default.

Google container registry

6

Now, It has been months since we pushed our application into Kubernetes and we enjoy the returns

as it is painless to manage and deploy them. There are about 10 queues processing different kind of

jobs in Sidekiq. At a point we achieved about 35000 jobs a minute post Kubernetes implementation.

In addition to this, we also deployed the Ruby on Rails and Django applications, Redis store,

PostgreSQL Database and Nginx running on Kubernetes. This also helped us in reducing the overall

working cost to its half of what of we spent earlier and along with greater benefits of Kubernetes.

It is also recommended to only expose ClusterIP Service for resources in the cluster except for the

Nginx and That’s exactly what we have done for the security reasons.

The amount of machines needed in NodePool is greater than deploying all the apps in a single

environment. This is what we used to do for staging. However if you reduce the request in the

configuration, it would just work alright.

We haven’t mentioned about Liveness and Readiness probe and setting up SSL and allotting a static

ip for the application for the pods and graceful shutdown of sidekiq and other applications and

commands to deploy, redeploy, rollback and monitoring in this article which necessitates another set

of articles.

Conclusion

